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S U M M A R Y
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic
arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed
time-series gi are modelled as a convolution of a simpler time-series f i , and an invariant point
spread function (PSF) h that attempts to account for the earthquake source process. The method
is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF
produces more impulsive, narrower, signals in the wave train. The resulting restored time-series
facilitates more accurate and objective relative traveltime estimation of the individual seismic
arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms
generated by the reflectivity method. Clean and sharp reconstructions are obtained with real
data, even for signals with relatively high noise content. Reconstructed signals are simpler,
more impulsive, and narrower, which allows highlighting of some details of arrivals that are
not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be
separately identified after processing. This is demonstrated for two seismic wave pairs used to
probe deep mantle and core–mantle boundary structure: (1) the Sab and Scd arrivals, which
travel above and within, respectively, a 200–300-km-thick, higher than average shear wave
velocity layer at the base of the mantle, observable in the 88–92 deg epicentral distance range
and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave
diffraction, and are nearly identical in timing near 108–110 deg in distance. A Java/Matlab
algorithm was developed for the signal restoration, which can be downloaded from the authors
web page, along with example data and synthetic seismograms.

Key words: core–mantle boundary, D′′, deconvolution, lower mantle, regularization, total
variation.

1 I N T RO D U C T I O N

Nearly all of the Earth’s interior remains inaccessible, thus remote

sampling of the interior is required. Presently, seismic waves provide

the most detailed view of the interior’s elastic structure. Seismic

determination of Earth structure involves, for example,

(a) accurate characterization of seismic energy that has sampled

the interior (depth and geography) of interest,

(b) reliable estimation or measurement of seismic wave timing,

amplitude, and frequency content and

(c) realistic reproduction of observed wave attributes, such as

time or waveform predictions from computational methods.

An important challenge is the requirement of clean and impulsive

seismic energy with good signal-to-noise ratio (SNR). A variety of

factors, however, result in greatly reduced numbers of usable data

due to high noise levels. Thus any method that aids in denoising

time-series data stands to greatly benefit studies of the Earth as a

system.

Traveltime and waveform measurements play an important role

in characterizing the Earth’s deep interior, in both the tomographic

inversion approach (e.g. Bijwaard et al. 1998; Masters et al. 2000;

Boschi & Dziewonski 2000; Kárason & van der Hilst 2001; Gu et al.
2001; Grand 2002; Ritsema & van Helst 2000) as well as forward

analyses (e.g. Wysession et al. 1999; Garnero 2000; Ni et al. 2002;

Rost & Revenaugh 2001; Ni & Helmberger 2003; Castle & van

der Hilst 2003). However, each earthquake has its own frequency

and source-time evolution behaviour, and recording stations vary

in their site conditions and instrument type, thus earthquake source

and SNRs often vary significantly in any given data set. Signals can

be averaged (stacked) to construct empirical source shapes for de-

convolution in the time domain (as in Lay et al. 2004), though this

typically introduces Gibbs phenomena, and does not address station

noise. The methods pursued here seek improved timing measure-

ments, whether made by hand or by cross-correlation with some
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reference pulses such as synthetic seismograms or an estimate of

the earthquake source time mechanism. Methods that facilitate more

accurate timing measurements of signals in the presence of noise

stand to increase the quantity (and quality) of data that can be used

for Earth structure studies. This includes the study of geographical

regions of interest that are limited because sparse earthquake seis-

micity often results in less data with adequate SNR. Seismic array

methods have been shown to significantly enhance SNRs (Rost &

Thomas 2004). The current geographical distribution of traditional

seismic arrays is, however, limited in comparison to that of stand

along threee-component seismometers. Thus, improving the quality

of individual seismogram data holds promise for improving Earth

structure interrogation.

In this study we address removal of source, receiver structure,

and the noise in the signal, leaving only the part of the signal most

directly due to reflecting surfaces and heterogeneities. Our tech-

nique effectively sharpens seismic signal Onsets, and improves the

visibility of the emergence of secondary seismic arrivals from a

dominant reference phase. We focus our approach on the applica-

tion of differential seismic wave analyses, as most deep Earth stud-

ies reference one seismic arrival to another (e.g. Garnero 2000).

We first present the method, which is a convolution-based approach

with total variation (TV) regularization (Rudin et al. 1992). We then

demonstrate and validate the method on two different examples: (1)

signal restoration of SKS and S (or Sdiff) in synthetic seismograms

and (2) the restoration of actual data for 31 seismic recordings of a

deep focus South American earthquake. We show how deconvolved

seismograms can be automatically measured for relative traveltime

determination and for waveform distortion diagnostics. We also

demonstrate the method’s utility for detection of two very similar

shaped pulses that are nearly superposed in time, which in raw data

appear as a broadening or deformation of the dominant phase. The

software used to deblur the signals and all examples are available

(Stefan et al. 2005).

2 M AT H E M AT I C A L M O D E L

In many applications, such as traveltime inversion tomography

(e.g. VanDecar 1991), accurate measurement of the arrival time of

seismic phases is very important. However, robust measurement of

the traveltimes is often difficult, particularly when data lacks clearly

defined onsets. Traveltime determination by hand is challenging be-

cause background noise often obscures confident identification of

signal initiation. Cross-correlation between the signal of interest and

a reference phase depends on the similarity of the two phases. This

condition is not always met, due to, for example, differential atten-

uation or one phase being altered from scattering, multipathing, or

anisotropy.

In the approach presented here, we apply a pre-processing of

the signal, which is designed to sharpen signal onsets such that

the process of determining arrival times is more robust. Our ap-

proach inherently accounts for waveform similarity across a suite of

recordings (e.g. a given seismic arrival across all stations recording

a given earthquake), thus enabling more reliable relative traveltime

estimation of phase initiation.

2.1 Signal degradation

We assume the recorded signal g is the composition of the source

signal (S), blurring effects of the Earth such as attenuation (A) and

scattering heterogeneities (H) and path effects (P) that include ge-

ometric spreading, reflection from internal interfaces (and so on),

and additive noise (N), and that we can model these effects by a

convolution

g = S ∗ A ∗ H ∗ P + N ,

where we try to reconstruct the part of the signal that contains the

path effects. We cannot expect to reconstruct the signal exactly be-

cause the source and attenuation are usually unknown. Hence, we

will call the approximated desired signal f and the approximation

of the combination of source and attenuation h, that is, we assume

that the observed signal g (e.g. the time-series containing SKS and

S) is the result of the convolution of the sharp signal f and the point

spread function (PSF) h, plus the addition of noise n (Claerbout

1985; Clayton & Wiggins 1976; Vogel 2002),

g = f ∗ h + n, (1)

here ∗ is the discrete convolution operator for two vectors f and h,

( f ∗ h)k =
∑

i

fi hk−i+1.

For example, a convolution with a Gaussian

h(t) = 1

σ
√

2π
e− t2

2σ2 , (2)

where the parameter σ governs the width of the function, results

in a σ -dependent blurring of the input signal. Fig. 1 illustrates two

examples of the impact of PSFs on a given signal.

2.2 Signal restoration withoutregularization

The goal of the signal restoration process is to identify the original

signal f in eq. (1), given the observed signal g. A direct approach,
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Figure 1. Examples of blurring by different PSFs. In both panels the left

picture shows a test signal (dashed line) and the blurred test signal (solid

line) blurred by a PSF (right-hand side picture) using the convolution-based

operator (1), where f is the test signal, h is the PSF and g is the resulting

blurred signal. No noise was added (i.e. n ≡0) and h is normalized,
∑

hi = 1,

to preserve the amplitude of the unblurred signal in the blurred signal. Panel

(a) shows blurring by an out-of-focus PSF. This kind of PSF models out of

focus lenses in 2-D and is constant on a disk. In the 1-D case it is constant on

an interval. It transforms all sharp onsets and offsets in a line with constant

slope, and smoothes out the small impulse in the test signal. Panel (b) shows

the blurring resulting from a Gaussian PSF (2). It blurs the onsets in a

smoother way and also smoothes out the small impulse.
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Figure 2. Result of unregularized deconvolution of a test signal. The test

signal f (dashed line) was blurred by the operator in (1) using a Gaussian

PSF and additive white noise with an amplitude of 0.01 added to the blurred

signal. The picture illustrates a significant amplification of the noise through

the reconstruction. The amount of noise amplification depends on the choice

of the PSF.

given h, is to find an approximation f̂ to f which minimizes the

error in the fit to the data through minimization of the norm of the

residual r

f̂ = arg min
f

‖r‖2
2 = arg min

f
‖g − f ∗ h‖2

2, (3)

where arg min denotes the argument that minimizes the expression

in the brackets. For noisy data, however, this does not result in a

usable reconstruction due to the associated very high amplification

of any noise in the signal. Fig. 2 shows that the additive noise of

amplitude 0.01 is amplified to an amplitude of about 2–10, that is,

by a factor of 200–1000. The amplification arises because of the ex-

treme ill-posedness of the deconvolution problem (Andrews & Hunt

1977; Katsaggelos 1991; Bertero & Boccacci 1998; Vogel 2002).

For example, suppose that we attempt to reconstruct the original

unfiltered signal from an observed signal which has already been

filtered by a band pass filter. Fig. 3 illustrates the effects of the ill-

posedness: small changes in the input result in large changes in the

output. In particular this means that unavoidable small changes from

noise contamination are amplified.

In order to obtain a low noise solution we have to provide addi-

tional information about the smoothness of the function. This results

in a regularized (Bertero & Boccacci 1998) problem. In practice, this

is done by adding a regularization term which penalizes signals with

high noise (Vogel 2002).

2.3 Signal restoration with regularization

Including regularization in eq. (3) yields the problem

f̂ = arg min
f

{‖r‖2
2 + λR( f )

}
, (4)

in which the second term R(f ) is the regularization term. The param-

eterλgoverns the trade-off between the fit to the data and the smooth-

ness of the reconstruction. Two common regularization methods

based on penalizing the noise by an estimate based on the deriva-

tive of f are Tikhonov and TV regularization (Vogel 2002). These
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Figure 3. Schematic illustration of the ill-posedness of the deconvolution

problem. (a) Shows a test signal in frequency domain (dashed-dotted line),

the PSF of a band pass filter in frequency domain (dashed line) with height

of 0.1 on the left- and right-hand side and 1 in the middle part. The solid

line shows an additive noise component. (b) Shows the band pass filtered

(convolved) test signal with and without noise. In the frequency domain this

signal is obtained by point wise multiplication of the original signal and

the PSF, that is, the left and right-hand side portions of the original signal

are multiplied by 1/10. The noise is added to the filtered signal. (c) Shows

the deconvolved signal without and with noise. In the frequency domain the

unregularized deconvolution is done by point wise dividing by the PSF (i.e.

here multiplying the left-hand side and the right-hand side portions of the

signal by 10). This process not only amplifies the signal but also the noise,

resulting in the high noise content in the reconstruction.

choices yield results with different characteristic shapes; regular-

ization using TV yields a piecewise constant reconstruction (Ring

1999) and preserves the edges of the signal, while Tikhonov yields

a smooth reconstruction, see Fig. 4. The norm for r in all cases is

L2; other methods with L1 residual can be found for example in

Claerbout & Muir (1973) and Claerbout (1985). This method can

be applied to each individual signal, as compared to a least squares

fit, which operates on a stack of signals (Claerbout et al. 1973),

which is important in the case of sparse data coverage. A compila-

tion of solutions using different regularization techniques including

a variation of the method in Claerbout et al. (1973) (with L2 resid-

ual), the Wiener deconvolution (Margrave 2001) and Water level

deconvolution (Clayton & Wiggins 1976) can be found in Fig. 5.

All methods resolve the peak next to SKS for an exactly known PSF

in panel (a). The Wiener deconvolution results in a reconstruction of

multiple peaks, that is, produces artefacts since the minimum phase

assumption required for the Wiener deconvolution is violated. L1

regularization shows a very clear result (one large delta impulse at

the position of SKS and a smaller one at the position of SPdKS) for

the exactly known PSF and fails for an approximated PSF in Panel

(b). The TV solution shows in both cases a consistent indication

of SPdKS without introducing additional artefacts. The success or

failure of the different regularization techniques depends on assump-

tions about the signal to be reconstructed. In case of TV we assume a

signal with sparse jump discontinuities, that is, a piecewise constant
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Figure 4. Regularized deconvolution: The dashed line shows the original

test signal. The test signal was blurred using the forward model (1) and the

out-of-focus blur in Fig. 1. The solid line shows the Tikhonov regularized

solution is smooth in the curved parts of the signal but the jumps in the

signal are still blurred and Gibb’s phenomena are introduced near the edges.

The dotted line shows the TV regularized method results in a piecewise

constant reconstruction and the position of the edges are preserved. This

result also illustrates, however, the typical loss in contrast of TV, that is, the

ratio between low and high point of the peak is reduced. In both cases the

peak in the middle can only be partially reconstructed because some of the

information of the original signal is lost in the noise after the blurring.
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Figure 5. Regularized deconvolution of synthetic SV displacement data. Panel (a) shows the separation of SKS and SPdKS by the deconvolution using the

exact PSF of a synthetic SV trace at 112 deg. for which SPdKS occurs about 5 s after SKS. The goal of the deconvolution is to separate SKS from SPdKS. Panel

(b) shows the more practical case of an unknown, thus only approximated PSF. TV shows in both cases clear evidence of SPdKS in the form of a second peak

in (a) and a broadening of SKS in (b).

signal. Methods like Wiener deconvolution assume a signal that is

a realization of white noise.

For our application we are interested in a sharp reconstruction of

the seismic signals and, therefore, TV is the best choice. The TV of

a function f as defined by Rudin et al. (1992)

TV( f ) =
∫ ∞

−∞
| f ′(t)| dt, (5)

is non-differentiable. We thus use

TVβ ( f ) =
∫ ∞

−∞

√
f ′(t)2 + β dt, (6)

where β > 0 is small (Vogel 2002). The resulting reconstruction

is no longer piecewise constant but has round edges, see Fig. 6. A

larger β results in a smoother objective function in eq. (4) and thus a

faster converging minimization. Although the edges of the signal are

still visible, it is also clear that the extent of the smoothing depends

on the size of β.

For the rest of this paper we assume that the signal degradation,

that is, the blurring of the true signal can be modelled by a Gaussian

PSF (eq. 2) with width parameter σ . The choice of σ is subjective;

for this application, we empirically choose a σ which yields the

sharpest reconstruction of the signal, that is, the one that results in

the sharpest onsets of the seismic arrivals of interest. Small σ corre-

spond to less deblurring while a too large σ will result in unwanted

oscillations. The penalty parameter λ in eq. (4) can be chosen by the
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Figure 6. This figure shows the effect of different choices of β, λ and σ .

(a) Shows the SV displacement data of an event in South America on 2000

May 12 with M b = 7.2 at a depth of 225 km picked up at the station in Moni

Apezanon in Crete at a epicentral distance of 104.1 deg. The SKS amplitude

is normalized to unit. (b) Shows the effect of a different β where λ and σ is

fixed. (c) The effect of a different λ and (d) the effect of a different σ .

L-curve approach, (Hansen 1994), in which the smoothness mea-

surement (i.e. the regularization term, here the TV) and the data-fit

measurement are plotted on an x–y plot. Fig. 7 shows the L-curve

for the test case in Fig. 6. When λ is too large, the small-scale struc-

tures of the signal are removed through oversmoothing of the signal.

Choosing λ too small results in a high noise content in the recon-

struction. The effect of different choices of parameters is illustrated

in Fig. 6.

While TV-based denoising and TV-regularized deconvolution

have successfully been applied in many applications for a variety

of signals, including medical and astronomical imaging (Vogel &

Oman 1996; Jonsson et al. 1998; Keeling 2002), it does not appear

to have been adopted specifically for edge detection as proposed in

this report. TV regularization results in virtually noise-free recon-

structions (i.e. excellent reconstructed signal to background noise

levels) of piecewise constant functions, and is known to preserve

the position of edges (Ring 1999; Strong & Chan 2000). Moreover,

in relevant applications, namely those which are very ill-posed and

noise contaminated, it yields very robust reconstructions. As we will

show in the examples in Section 3, this is also the case for seismic

signals.

2.4 Numerical formulation

The proposed method of signal restoration requires an efficient al-

gorithm which minimizes the objective function

J ( f ) = ‖g − f ∗ h‖2
2 + λTVβ ( f ). (7)

The necessary steps in the calculation of the objective function, and

its minimization by the limited memory BFGS (L-BFGS) method
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Figure 7. L-curve: This plot shows the trade-off between the smoothness

and the data fit. The x-axis shows the norm of the residual, that is, the

measure of how well the reconstruction fits the given data. The y-axis shows

the regularization term, that is, the smoothness measurement (here TV). The

graph shows that a better data fit leads to a less smooth reconstruction. The

parameter λ can be used to govern this trade off. For each choice of λ there

is a corresponding point on the L-curve (here indicated by the arrow and

the corresponding value of λ). Usually the graph has a corner point thus

the name L-curve. The corner point is usually chosen as the point which

gives the best trade-off in these errors. The reconstructions in Fig. 6 show

the reconstruction with different λ.

(Zhu et al. 1997; Nocedal & Wright 1999), are described in an elec-

tronic supplement. The edge detection applied to the deconvolved

signals is also presented in the electronic supplement (Stefan et al.
2005).

3 E X P E R I M E N T S

We demonstrate the deconvolution method with the edge detection

on synthetic and real seismic data.

3.1 Synthetic seismograms

First we look at synthetic seismograms produced using the

1-D PREM reference model (Dziewonski & Anderson 1981). The

synthetic seismograms were generated by the reflectivity method

(Müller 1985) for an earthquake at a depth of 500 km. Receiver

distances are from 90 to 115 degrees, in 1 degree increments. Fig. 8

shows SKS at 90 degrees, which illustrates how the deconvolution

process transforms the original seismic signal into a much sharper

signal, without introducing additional noise or artefacts. The usage

of a centred PSF results in a reconstruction that is centred around the

maximum of SKS. This means, however, that the arrival time of SKS
in the reconstruction is shifted compared to the arrival time of SKS
in the original record. While absolute traveltime information can be

retrieved by methods that approximate the half width of the PSF, in

this paper we focus on relative timing and waveshape information

between a given seismic phase at different seismographic stations,

as well as two different arrivals at a single station.
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Figure 8. Deconvolution of a synthetic SKS at 90 degrees. The synthetic SV

wave train was deconvolved using a Gaussian PSF with σ = 0.12, sampled

from −1/2 to 1/2 at 256 points by minimizing (7) with λ = .01 using the L-

BFGS algorithm described in an electronic supplement. The deconvolution

transforms the original SKS phase (solid line) into a sharp rectangle, where

it is very easy to see the onset time of SKS.
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(b) Deconvolved synthetic SV displacement record

Figure 9. (a) SV component reflectivity synthetics, for a source depth of 500 km. Receiver distances are from 90 to 115 degrees, in one degree increments.

Sampling rate is 0.1 s, λ = 0.01, σ SV = 0.12, and β = 10−6. (b) Deconvolved synthetics. Traces in both panels are aligned at the detected SKS onset in panel

(b) using an edge detection method. At a distance of 108 deg, the formation and subsequent move out of SPdiff KS can be seen in both plots, though it is first

visible in the deconvolved traces: SKS remains rectangular until the formation of SPdiff KS initiates, which first broadens SKS, and then emerges as an additional

rectangle.

Fig. 9 shows a time–distance plot of the original and deconvolved

synthetic SV wave trains aligned at the SKS arrival time obtained

after employing the edge detection method on the deconvolved sig-

nals. The development and subsequent move out of SPdiff KS relative

to SKS is seen at the larger distances (i.e. >108 deg). This process is

more pronounced in the deconvolved traces than in the original seis-

mograms, and presents a clear advantage over traditional methods

for studying core–mantle boundary structure, e.g. ultra-low velocity

zones (ULVZ), with SPdiff KS (e.g. see Thorne & Garnero 2004).

Finally, to assess the accuracy of the time measurements we con-

sider the difference of our estimates of the differential time of SKS
and S arrivals from the deconvolved synthetics to those by ray the-

ory for the PREM model. This measurement is independent of the

earlier described shifting effect. Fig. 10 shows that the prediction

agrees reasonably well at distances less than 105 deg (roughly less

than ±0.2 s difference). Between the distances of 105 and 112 deg,

SPdKS initiates, causing SKS to broaden, and thus has an altered

frequency content. This slightly degrades the predictions from our

method. A similar phenomenon occurs beyond 112 deg, where the

S wave is well into diffraction around the core, and ray theory is in-

appropriate. However, these errors are relatively small compared to

those introduced from measurements by hand or by cross-correlation

with a master pulse, each of which can yield much higher errors

(±1.0 s, e.g. see Moore et al. 2004). Fig. 10 also shows that our

approach is not very sensitive to the reconstruction parameters. In

particular, the figure shows that the measurement error is almost the
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Figure 10. The difference between S minus SKS differential traveltimes

(T S–SKS): plotted are T S–SKS computed from our method applied to reflec-

tivity synthetic seismograms subtracted from those measured by ray theory,

both for the PREM model. This difference is compared for several restoration

parameter choices.

same for β = 10−6 and β = 10−5, σ and λ have a bigger impact,

though traveltimes stay within roughly 0.1 s of the other parameter

choices.

3.2 Real seismic data

In the following we apply our method to the records of an earthquake

in South America M b = 7.2 on 2000 May 12, recorded at 31 broad-

band stations in Europe.

200 250 300 350 400 450 500 550 600 650 700

Relative time (sec)

Original trace (APEZ.512)

Water level decon. th=0.08

Wiener decon n=100, stab=1

Figure 11. Original and deconvolved SV trace from a deep focus South American earthquake. The trace (104 deg. source receiver distance) contains SKS and

SPdKS. As in the synthetic case a systematic broadening of SKS in the TV solution indicates the presence of the SPdKS phase.

Fig. 11 shows a compilation of different regularization techniques

applied to this signal. The results compare very well to the synthetic

case in Fig. 5. The indication of SPdKS in the form of a broaden-

ing of SKS in the TV solution is very similar to the synthetic case.

Also TV seems to handle the noise in the signal, in particular be-

fore the SKS arrival, much better than the other methods. The L1

solution has the same problem as in the Fig. 5 panel (b), namely it

shows multiple delta impulses instead of a single one at the location

of SPdKS. Fig. 12 shows the original and deconvolved SH and SV
traces in distance profiles. Thus the sharp rectangular pulse shape

that was obtained in the synthetic seismograms is also obtained for

real data. Moreover, the deconvolved data facilitates possible detec-

tion of nearly overlapping phases (here Sab and Scd ). This is further

emphasized in Fig. 13, in which the SH traces of Fig. 12 are grouped

into distance bins and then stacked. The broadening of S where S
is apparent, consistent with the separation of S into Sab and Scd in

the presence of a D′′ high velocity layer. Thus this method holds

promise as an indicator of the existence of discontinuous high ve-

locity layering in the deep mantle, which in past efforts has been

predominantly probed using evidence for reflections between S and

the core-reflected ScS (e.g. see review by Wysession et al. 1998);

these are observed at much shorter epicentral distances, such as 60–

80 deg. Therefore, a limitation in the S–ScS approach for detecting a

discontinuity is geographical restrictions: large areas of the Pacific

and Atlantic oceans result in larger epicentral distances between

available earthquake-station paths. The significance of a D′′ discon-

tinuity detection probe at a different (larger) distance range is that

new areas of the deep mantle may be probed.

3.3 Limitations and future work

In this study, we have chosen a Gaussian as PSF, which is arbitrary.

Even though the results using a Gaussian seem to be good, there

are undoubtedly better choices for the PSF. This is highlighted by

some seismic pulses in the raw data appearing slightly asymmetrical
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(b) Deconvolved SH displacement record
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(d) Deconvolved SV displacement record
.
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Figure 12. Original and deconvolved SH and SV recordings from a deep focus South American earthquake. Deconvolution was performed using a Gaussian

PSF with σ = 0.17, sampled at 512 points between −1/2 and 1/2. The regularization parameter λ = 0.1 was chosen by the L-curve approach (Fig. 7). (a)

Observed displacement SH traces. (b) Deconvolved SH traces. Records in (a) and (b) are aligned using times obtained from our edge detection approach on the

deconvolved records in panel (b). Note that the deconvolved S pulses have approximately the same width less than 90 deg and greater than 103. Broadening

between 90 and 98 deg is consistent with the presence of two D′′ related phases: Sab and Scd , see also Fig. 13. (c) Observed and (d) deconvolved SV traces,

where both panels are aligned using the edge-detected SKS times in panel (d).

(e.g. some of the SKS pulses in Fig. 12 possess a sharper upswing

than the downswing), resulting in less sharp offsets in the decon-

volved traces. A two-sided Gaussian, for example, could remedy

this particular effect and will be pursued in future work. Alterna-

tive PSFs could also be derived directly by using a deconvolution

method based on the data and an estimated source function, or by

using more theoretical results of the filtering effect of the Earth’s

mantle. Future work will also include the application of the method

to more events and different phases. In particular the robustness of

the traveltime measurement must be further assessed and the poten-

tial to reveal structures in the signals that are not directly visible in

the original signal due to the blurring has to be explored in more

detail.

Here we have pursued an approach that has enabled improved dif-

ferential analyses of phases that arrive closely in time. An inherent

assumption is that the part of the signal removed in the reconstruc-

tion is common to all arrivals of interest. In fact, however, one arrival

may experience enhanced attenuation relative to the other (such as

ScS, relative to S, and so on). While this challenge is not new in

deep Earth studies, especially those involving deconvolutions, we

reiterate its potential presence for our method. However, the bene-

fits of the TV-based deconvolution are clearly substantial, especially
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Figure 13. The deconvolved SH traces of Fig. 12 are grouped into distance

bins then summed (thin solid lines). These overlie a thicker grey reference

boxcar trace, that emphasizes the broadening of the S waves between around

90 and 100 deg, consistent with the presence of Sab and Scd phases due to

a high velocity D′′ layer.

the ability to make less ambiguous differential traveltime measure-

ments.

4 C O N C L U S I O N S

We have presented a method to deconvolve PSFs from observed

and synthetic seismograms to obtain more impulsive and narrower

seismic signals, resulting in clearer visibility of more subtle wave-

form and timing variability in profiles of data. To accommodate the

ill-posedness, that is, to control the noise amplification, we used TV

regularization and described an efficient algorithm to compute the

deconvolution. We showed that TV-regularized deconvolution re-

sults in sharp and clear reconstructions of both noise-free synthetic

seismograms and noise-contaminated real seismograms of a test

case. The signal reconstruction algorithm resulted in more accurate

relative timing and amplitude information from the deconvolved

traces than is presently possible with the raw traces. We have pre-

sented two example applications of the method: the closely arriving

SKS and SPdKS waves, and the S and Sdiff waves the traverse the D

layer. In each case, the reconstructed signals enable more accurate

analysis and imaging of deep Earth structure.
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